Partial Correlation Estimation by Joint Sparse Regression Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Correlation Estimation by Joint Sparse Regression Models — Supplemental Material

where Y = (y1, · · · , yp) and ỹi = √ σyi,w̃i = wi/σ . These properties are used for the proof of the main results. Note: throughout the supplementary material, when evaluation is taken place at σ = σ̄, sometimes we omit the argument σ in the notation for simplicity. Also we use Y = (y1, · · · , yp) to denote a generic sample and use Y to denote the p× n data matrix consisting of n i.i.d. such sa...

متن کامل

Partial Correlation Estimation by Joint Sparse Regression Models.

In this paper, we propose a computationally efficient approach -space(Sparse PArtial Correlation Estimation)- for selecting non-zero partial correlations under the high-dimension-low-sample-size setting. This method assumes the overall sparsity of the partial correlation matrix and employs sparse regression techniques for model fitting. We illustrate the performance of space by extensive simula...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Joint estimation of sparse multivariate regression and conditional graphical models

Multivariate regression model is a natural generalization of the classical univariate regression model for fitting multiple responses. In this paper, we propose a highdimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency structure among the multiple responses. The proposed method...

متن کامل

Local polynomial estimation in partial linear regression models under dependence

A regression model whose regression function is the sum of a linear and a nonparametric component is presented. The design is random and the response and explanatory variables satisfy mixing conditions. A new local polynomial type estimator for the nonparametric component of the model is proposed and its asymptotic normality is obtained. Specifically, this estimator works on a prewhitening tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2009

ISSN: 0162-1459,1537-274X

DOI: 10.1198/jasa.2009.0126